unifiedWMWqPCR: analyzing RT-qPCR data in R with the unified Wilcoxon–Mann–Whitney test

نویسندگان

  • Jan De Neve
  • Joris Meys
چکیده

Most conventional statistical tests for analyzing RT-qPCR data require normalization before differential expression can be assessed. This normalization can have a substantial effect on the interpretation and validity of the statistical test, but this effect is often ignored. Therefore the uWMW test, as proposed in [1], extends the Wilcoxon–Mann–Whitney test so that the normalization is incorporated in the testing procedure. Both the effect size and the normalization have an interpretation in terms of the probability P (Y 4 Y ′) := P (Y < Y ′) + 0.5P (Y = Y ′), where Y and Y ′ denote independent responses (here quantification cycles). We employ the same notation as in [1]. Let the random variable Yijk denote the quantification cycle Cq associated with feature i ∈ {1, . . . ,m + h} (a feature can for example be a gene or a microRNA) of sample j ∈ {1, . . . , nk} (a sample can for example be a tissue or a patient) in

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

unifiedWMWqPCR: the unified Wilcoxon-Mann-Whitney test for analyzing RT-qPCR data in R

MOTIVATION Recently, De Neve et al. proposed a modification of the Wilcoxon-Mann-Whitney (WMW) test for assessing differential expression based on RT-qPCR data. Their test, referred to as the unified WMW (uWMW) test, incorporates a robust and intuitive normalization and quantifies the probability that the expression from one treatment group exceeds the expression from another treatment group. H...

متن کامل

An extension of the Wilcoxon-Mann-Whitney test for analyzing RT-qPCR data.

Classical approaches for analyzing reverse transcription quantitative polymerase chain reaction (RT-qPCR) data commonly require normalization before assessing differential expression (DE). Normalization often has a substantial effect on the interpretation and validity of the subsequent analysis steps, but at the same time it causes a reduction in variance and introduces dependence among the nor...

متن کامل

The Two-sample Rank-sum Test: Early Development

The historical development of the two-sample rank-sum test is explored. While most textbooks and journal articles attribute the origin of the two-sample rank-sum test to Wilcoxon (1945) and/or Mann and Whitney (1947), the test was independently developed by at least six researchers in the late 1940s and early 1950s. In addition to Wilcoxon and Mann and Whitney, Festinger (1946), Whitfield (1947...

متن کامل

An optimal Wilcoxon-Mann-Whitney test of mortality and a continuous outcome.

We consider a two-group randomized clinical trial, where mortality affects the assessment of a follow-up continuous outcome. Using the worst-rank composite endpoint, we develop a weighted Wilcoxon-Mann-Whitney test statistic to analyze the data. We determine the optimal weights for the Wilcoxon-Mann-Whitney test statistic that maximize its power. We derive a formula for its power and demonstrat...

متن کامل

A data-adaptive methodology for finding an optimal weighted generalized Mann-Whitney-Wilcoxon statistic

Xie and Priebe [2002. “Generalizing the Mann–Whitney–Wilcoxon Statistic”. J. Nonparametric Statist. 12, 661–682] introduced the class of weighted generalized Mann–Whitney–Wilcoxon (WGMWW) statistics which contained as special cases the classical Mann–Whitney test statistic and many other nonparametric distribution-free test statistics commonly used for the two-sample testing problem. The two-sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015